TY - JOUR
T1 - Bone Morphogenic Protein-2-Conjugated Three-Dimensional-Printed Poly (L-Lactic Acid) (PLLA) Scaffold is likely Promising as an Effective Bone Substitute
AU - Cho, Chong Su
AU - Jo, Inho
N1 - Publisher Copyright:
© 2023, Korean Tissue Engineering and Regenerative Medicine Society.
PY - 2023/4
Y1 - 2023/4
N2 - Bone morphogenic protein-2 (BMP-2)-conjugated three-dimensional (3-D)-printed poly (L-lactic acid)(PLLA) scaffold is likely promising as an effective bone substitute for enhancing bone regeneration of massive bone defects caused by tumor resection, traumatic injury, or congenital diseases. The authors developed a new bone substitute using a novel strategy composed of 3-D-printed PLLA scaffolds through a sequential coating of catechol-conjugated alginate (C-AL), BMP-2, and collagen (CO). The 3-D-printed PLLA scaffold was successfully obtained with 5 mm of diameter, 1 mm of thickness, 400 μm of pore size, 187–230 μm of grid thickness, and 82% of porosity. Alkaline phosphatase (ALP) activity of the BMP-2-immobilized PLLA scaffold in MC3T3-E1 and W-20-17 cells was more increased than BMP-2 itself due to the controlled release of BMP-2 from the scaffold. Tenfold new bone formation for the BMP-2-immobilized PLLA scaffold was obtained by micro-CT analysis than PLLA scaffold without BMP-2 weeks after 4 weeks of transplantation model mouse. Further another big animal model study should be performed before clinical trials.
AB - Bone morphogenic protein-2 (BMP-2)-conjugated three-dimensional (3-D)-printed poly (L-lactic acid)(PLLA) scaffold is likely promising as an effective bone substitute for enhancing bone regeneration of massive bone defects caused by tumor resection, traumatic injury, or congenital diseases. The authors developed a new bone substitute using a novel strategy composed of 3-D-printed PLLA scaffolds through a sequential coating of catechol-conjugated alginate (C-AL), BMP-2, and collagen (CO). The 3-D-printed PLLA scaffold was successfully obtained with 5 mm of diameter, 1 mm of thickness, 400 μm of pore size, 187–230 μm of grid thickness, and 82% of porosity. Alkaline phosphatase (ALP) activity of the BMP-2-immobilized PLLA scaffold in MC3T3-E1 and W-20-17 cells was more increased than BMP-2 itself due to the controlled release of BMP-2 from the scaffold. Tenfold new bone formation for the BMP-2-immobilized PLLA scaffold was obtained by micro-CT analysis than PLLA scaffold without BMP-2 weeks after 4 weeks of transplantation model mouse. Further another big animal model study should be performed before clinical trials.
UR - http://www.scopus.com/inward/record.url?scp=85150900893&partnerID=8YFLogxK
U2 - 10.1007/s13770-023-00537-w
DO - 10.1007/s13770-023-00537-w
M3 - Comment/debate
C2 - 36964871
AN - SCOPUS:85150900893
SN - 1738-2696
VL - 20
SP - 155
EP - 156
JO - Tissue Engineering and Regenerative Medicine
JF - Tissue Engineering and Regenerative Medicine
IS - 2
ER -