Bone Morphogenic Protein-2-Conjugated Three-Dimensional-Printed Poly (L-Lactic Acid) (PLLA) Scaffold is likely Promising as an Effective Bone Substitute

Chong Su Cho, Inho Jo

Research output: Contribution to journalComment/debate

Abstract

Bone morphogenic protein-2 (BMP-2)-conjugated three-dimensional (3-D)-printed poly (L-lactic acid)(PLLA) scaffold is likely promising as an effective bone substitute for enhancing bone regeneration of massive bone defects caused by tumor resection, traumatic injury, or congenital diseases. The authors developed a new bone substitute using a novel strategy composed of 3-D-printed PLLA scaffolds through a sequential coating of catechol-conjugated alginate (C-AL), BMP-2, and collagen (CO). The 3-D-printed PLLA scaffold was successfully obtained with 5 mm of diameter, 1 mm of thickness, 400 μm of pore size, 187–230 μm of grid thickness, and 82% of porosity. Alkaline phosphatase (ALP) activity of the BMP-2-immobilized PLLA scaffold in MC3T3-E1 and W-20-17 cells was more increased than BMP-2 itself due to the controlled release of BMP-2 from the scaffold. Tenfold new bone formation for the BMP-2-immobilized PLLA scaffold was obtained by micro-CT analysis than PLLA scaffold without BMP-2 weeks after 4 weeks of transplantation model mouse. Further another big animal model study should be performed before clinical trials.

Original languageEnglish
Pages (from-to)155-156
Number of pages2
JournalTissue Engineering and Regenerative Medicine
Volume20
Issue number2
DOIs
StatePublished - Apr 2023

Bibliographical note

Publisher Copyright:
© 2023, Korean Tissue Engineering and Regenerative Medicine Society.

Fingerprint

Dive into the research topics of 'Bone Morphogenic Protein-2-Conjugated Three-Dimensional-Printed Poly (L-Lactic Acid) (PLLA) Scaffold is likely Promising as an Effective Bone Substitute'. Together they form a unique fingerprint.

Cite this