Abstract
Pyrolysis, a thermal decomposition without oxygen, is a promising technology for transportable liquids from whole fractions of lignocellulosic biomass. However, due to the hydrophilic products of pyrolysis, the liquid oils have undesirable physicochemical characteristics, thus requiring an additional upgrading process. Biological upgrading methods could address the drawbacks of pyrolysis by utilizing various hydrophilic compounds as carbon sources under mild conditions with low carbon footprints. Versatile chemicals, such as lipids, ethanol, and organic acids, could be produced through microbial assimilation of anhydrous sugars, organic acids, aldehydes, and phenolics in the hydrophilic fractions. The presence of various toxic compounds and the complex composition of the aqueous phase are the main challenges. In this review, the potential of bioconversion routes for upgrading the aqueous phase of pyrolysis oil is investigated with critical challenges and perspectives. Graphical Abstract: [Figure not available: see fulltext.].
Original language | English |
---|---|
Article number | 34 |
Journal | Bioresources and Bioprocessing |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2023 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s).
Keywords
- Aqueous phase
- Biological conversion
- Lignocellulosic biomass
- Pyrolysis oil
- Toxicity mitigation