Abstract
The tumor microenvironment (TME) plays a crucial role in tumorigenesis and cancer cell metastasis. Accordingly, a drug-delivery system (DDS) that is capable of targeting tumor and releasing drugs in response to TME-associated stimuli should lead to potent antitumor efficacy. Here, a cancer targeting, reactive oxygen species (ROS)-responsive drug delivery vehicle as an example of a TME-targeting DDS is reported. Tumor targeting is achieved using biotin as a ligand for “biotin transporter”–overexpressing malignant tumors, and bilirubin-based nanoparticles (BRNPs) are used as a drug-delivery carrier that enables ROS-responsive drug release. Doxorubicin-loaded, biotinylated BRNPs (Dox@bt-BRNPs) with size of ≈100 nm are prepared by a one-step self-assembly process. Dox@bt-BRNPs exhibit accelerated Dox-release behavior in response to ROS and show specific binding as well as anticancer activity against biotin transporter–overexpressing HeLa cells in vitro. bt-BRNPs labeled with cypate, near-infrared dye, show much greater accumulation at tumor sites in HeLa tumor-bearing mice than BRNPs lacking the biotin ligand. Finally, intravenous injection of Dox@bt-BRNPs into HeLa tumor-bearing mice results in greater antitumor efficacy compared with free Dox, bt-BRNPs only, and Dox@BRNPs without causing any appreciable body weight loss. Collectively, these findings suggest that bt-BRNPs hold potential as a new TME-responsive DDS for effectively treating various tumors.
Original language | English |
---|---|
Article number | 1800017 |
Journal | Advanced Science |
Volume | 5 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2018 |
Bibliographical note
Publisher Copyright:© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- bilirubin nanoparticles
- biotin transporters
- reactive oxygen species (ROS)
- stimuli responsiveness
- targeted cancer therapy
- tumor microenvironments