Abstract
In spite of recent success of proposal-based CNN models for object detection, it is still difficult to detect small objects due to the limited and distorted information that small region of interests (RoI) contain. One way to alleviate this issue is to enhance the features of small RoIs using a super-resolution (SR) technique. We investigate how to improve feature-level super-resolution especially for small object detection, and discover its performance can be significantly improved by (i) utilizing proper high-resolution target features as supervision signals for training of a SR model and (ii) matching the relative receptive fields of training pairs of input low-resolution features and target high-resolution features. We propose a novel feature-level super-resolution approach that not only correctly addresses these two desiderata but also is integrable with any proposal-based detectors with feature pooling. In our experiments, our approach significantly improves the performance of Faster R-CNN on three benchmarks of Tsinghua-Tencent 100K, PASCAL VOC and MS COCO. The improvement for small objects is remarkably large, and encouragingly, those for medium and large objects are nontrivial too. As a result, we achieve new state-of-the-art performance on Tsinghua-Tencent 100K and highly competitive results on both PASCAL VOC and MS COCO.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 International Conference on Computer Vision, ICCV 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 9724-9733 |
Number of pages | 10 |
ISBN (Electronic) | 9781728148038 |
DOIs | |
State | Published - Oct 2019 |
Event | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of Duration: 27 Oct 2019 → 2 Nov 2019 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
Volume | 2019-October |
ISSN (Print) | 1550-5499 |
Conference
Conference | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 27/10/19 → 2/11/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.