TY - JOUR
T1 - Band structure engineering of multinary chalcogenide topological insulators
AU - Chen, Shiyou
AU - Gong, X. G.
AU - Duan, Chun Gang
AU - Zhu, Zi Qiang
AU - Chu, Jun Hao
AU - Walsh, Aron
AU - Yao, Yu Gui
AU - Ma, Jie
AU - Wei, Su Huai
PY - 2011/6/17
Y1 - 2011/6/17
N2 - Topological insulators (TIs) have been found in strained binary HgTe and ternary I-III-VI2 chalcopyrite compounds such as CuTlSe2 which have inverted band structures. However, the nontrivial band gaps of these existing binary and ternary TIs are limited to small values, usually around 10 meV or less. In this work, we reveal that a large nontrivial band gap requires the material to have a large negative crystal field splitting ΔCF at the top of the valence band and a moderately large negative s-p band gap Egs-p. These parameters can be better tuned through chemical ordering in multinary compounds. Based on this understanding, we show that a series of quaternary I2-II-IV-VI4 compounds, including Cu2HgPbSe4, Cu2CdPbSe4, Ag2HgPbSe4, and Ag2CdPbTe4, are TIs, in which Ag2HgPbSe4 has the largest TI band gap of 47 meV because it combines the optimal values of ΔCF and Egs-p.
AB - Topological insulators (TIs) have been found in strained binary HgTe and ternary I-III-VI2 chalcopyrite compounds such as CuTlSe2 which have inverted band structures. However, the nontrivial band gaps of these existing binary and ternary TIs are limited to small values, usually around 10 meV or less. In this work, we reveal that a large nontrivial band gap requires the material to have a large negative crystal field splitting ΔCF at the top of the valence band and a moderately large negative s-p band gap Egs-p. These parameters can be better tuned through chemical ordering in multinary compounds. Based on this understanding, we show that a series of quaternary I2-II-IV-VI4 compounds, including Cu2HgPbSe4, Cu2CdPbSe4, Ag2HgPbSe4, and Ag2CdPbTe4, are TIs, in which Ag2HgPbSe4 has the largest TI band gap of 47 meV because it combines the optimal values of ΔCF and Egs-p.
UR - http://www.scopus.com/inward/record.url?scp=79961221523&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.83.245202
DO - 10.1103/PhysRevB.83.245202
M3 - Article
AN - SCOPUS:79961221523
SN - 1098-0121
VL - 83
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 24
M1 - 245202
ER -