TY - JOUR
T1 - Automated extraction of information of lung cancer staging from unstructured reports of PET-CT interpretation
T2 - natural language processing with deep-learning
AU - Park, Hyung Jun
AU - Park, Namu
AU - Lee, Jang Ho
AU - Choi, Myeong Geun
AU - Ryu, Jin Sook
AU - Song, Min
AU - Choi, Chang Min
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Extracting metastatic information from previous radiologic-text reports is important, however, laborious annotations have limited the usability of these texts. We developed a deep-learning model for extracting primary lung cancer sites and metastatic lymph nodes and distant metastasis information from PET-CT reports for determining lung cancer stages. Methods: PET-CT reports, fully written in English, were acquired from two cohorts of patients with lung cancer who were diagnosed at a tertiary hospital between January 2004 and March 2020. One cohort of 20,466 PET-CT reports was used for training and the validation set, and the other cohort of 4190 PET-CT reports was used for an additional-test set. A pre-processing model (Lung Cancer Spell Checker) was applied to correct the typographical errors, and pseudo-labelling was used for training the model. The deep-learning model was constructed using the Convolutional-Recurrent Neural Network. The performance metrics for the prediction model were accuracy, precision, sensitivity, micro-AUROC, and AUPRC. Results: For the extraction of primary lung cancer location, the model showed a micro-AUROC of 0.913 and 0.946 in the validation set and the additional-test set, respectively. For metastatic lymph nodes, the model showed a sensitivity of 0.827 and a specificity of 0.960. In predicting distant metastasis, the model showed a micro-AUROC of 0.944 and 0.950 in the validation and the additional-test set, respectively. Conclusion: Our deep-learning method could be used for extracting lung cancer stage information from PET-CT reports and may facilitate lung cancer studies by alleviating laborious annotation by clinicians.
AB - Background: Extracting metastatic information from previous radiologic-text reports is important, however, laborious annotations have limited the usability of these texts. We developed a deep-learning model for extracting primary lung cancer sites and metastatic lymph nodes and distant metastasis information from PET-CT reports for determining lung cancer stages. Methods: PET-CT reports, fully written in English, were acquired from two cohorts of patients with lung cancer who were diagnosed at a tertiary hospital between January 2004 and March 2020. One cohort of 20,466 PET-CT reports was used for training and the validation set, and the other cohort of 4190 PET-CT reports was used for an additional-test set. A pre-processing model (Lung Cancer Spell Checker) was applied to correct the typographical errors, and pseudo-labelling was used for training the model. The deep-learning model was constructed using the Convolutional-Recurrent Neural Network. The performance metrics for the prediction model were accuracy, precision, sensitivity, micro-AUROC, and AUPRC. Results: For the extraction of primary lung cancer location, the model showed a micro-AUROC of 0.913 and 0.946 in the validation set and the additional-test set, respectively. For metastatic lymph nodes, the model showed a sensitivity of 0.827 and a specificity of 0.960. In predicting distant metastasis, the model showed a micro-AUROC of 0.944 and 0.950 in the validation and the additional-test set, respectively. Conclusion: Our deep-learning method could be used for extracting lung cancer stage information from PET-CT reports and may facilitate lung cancer studies by alleviating laborious annotation by clinicians.
KW - Auto-annotation
KW - Deep learning
KW - Lung cancer
KW - Natural language processing
KW - Pseudo-labelling
UR - https://www.scopus.com/pages/publications/85137103991
U2 - 10.1186/s12911-022-01975-7
DO - 10.1186/s12911-022-01975-7
M3 - Article
C2 - 36050674
AN - SCOPUS:85137103991
SN - 1472-6947
VL - 22
JO - BMC Medical Informatics and Decision Making
JF - BMC Medical Informatics and Decision Making
IS - 1
M1 - 229
ER -