Abstract
Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and anti-arthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.
Original language | English |
---|---|
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | Journal of Ginseng Research |
Volume | 48 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2024 |
Bibliographical note
Publisher Copyright:© 2023
Keywords
- Degenerative diseases
- Ginseng
- Gintonin lysophosphatidic acids
- New material
- ginseng-derived neurotrophin