Asymmetric Nanocrescent Antenna on Upconversion Nanocrystal

Doyeon Bang, Eun Jung Jo, Soongweon Hong, Ju Young Byun, Jae Young Lee, Min Gon Kim, Luke P. Lee

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Frequency upconversion activated with lanthanide has attracted attention in various real-world applications, because it is far simpler and more efficient than traditional nonlinear susceptibility-based frequency upconversion, such as second harmonic generation. However, the quantum yield of frequency upconversion of lanthanide-based upconversion nanocrystals remains inefficient for practical applications, and spatial control of upconverted emission is not yet developed. Here, we developed an asymmetric nanocrescent antenna on upconversion nanocrystal (ANAU) to deliver excitation light effectively to the core of upconversion nanocrystal by nanofocusing light and generating asymmetric frequency upconverted emission concentrated toward the tip region. ANAUs were fabricated by high-angle deposition (60°) of gold (Au) on the isolated upconversion nanoparticles supported by nanopillars then moved to refractive-index matched substrate for orientation-dependent upconversion luminescence analysis in the single-nanoparticle scale. We studied shape-dependent nanofocusing efficiency of nanocrescent antennae as a function of the tip-to-tip distance by modulating the deposition angle. The generation of asymmetric frequency upconverted emission toward the tip region was simulated by the asymmetric far-field radiation pattern of dipoles in the nanocrescent antenna and experimentally demonstrated by the orientation-dependent photon intensity of frequency upconverted emission of an ANAU. This finding provides a new way to improve frequency upconversion using an antenna, which locally increases the excitation light and generates the radiation power to certain directions for various applications.

Original languageEnglish
Pages (from-to)6583-6590
Number of pages8
JournalNano Letters
Volume17
Issue number11
DOIs
StatePublished - 8 Nov 2017

Bibliographical note

Funding Information:
This research was financially supported by grants from the Global Research Lab (GRL) Program (NRF-2013K1A1A2A02050616) funded by the Ministry of Science, ICT and Future Planning and the Air Force Office of Scientific Research Grants AFOSR FA2386-13-1-4120.

Publisher Copyright:
© 2017 American Chemical Society.

Keywords

  • antenna
  • Asymetric
  • nanocrescent
  • nanocrystal
  • plasmonics
  • upconversion

Fingerprint

Dive into the research topics of 'Asymmetric Nanocrescent Antenna on Upconversion Nanocrystal'. Together they form a unique fingerprint.

Cite this