Abstract
Global warming and its associated changes in the timing of seasonal progression may produce substantial ripple effects on the regional climate and ecosystem. This study analyzes the surface air temperature recorded during the period 1919–2017 at seven stations in the Republic of Korea to investigate the long-term changes at the beginning and ending of the summer season and their relationship with the warming trends of spring and autumn. The temperatures at the starting (June 1) and ending (August 31) dates of the past period (1919–1948) advanced by 13 days and delayed by 4 days, respectively, for the recent period (1988–2017). This asymmetric change was caused by continuous warming in May for the entire period of analysis and an abrupt warming in September in the recent decades. Different amplitudes of the expansion of the western North Pacific subtropical high in May and September are responsible for the asymmetric expansion of the summer season. The projections of surface warming for spring and autumn in Korea used the downscaled grid data of a regional climate model, which were obtained by the Representative Concentration Pathway 8.5 scenario of a general circulation model, and indicated a continuous positive trend until 2100. Larger interannual variability of blooming timing of early autumn flowers than that of late spring flowers may represent the response of the ecosystem to the seasonally asymmetric surface warming. Results suggest that the shift of seasons and associated warming trend have a disturbing effect on an ecosystem, and this trend will intensify in the future.
Original language | English |
---|---|
Pages (from-to) | 619-627 |
Number of pages | 9 |
Journal | Asia-Pacific Journal of Atmospheric Sciences |
Volume | 57 |
Issue number | 3 |
DOIs | |
State | Published - Aug 2021 |
Bibliographical note
Publisher Copyright:© 2020, The Author(s).
Keywords
- RCP8.5
- Seasonal progression
- Surface warming
- Western North Pacific subtropical high