TY - JOUR
T1 - Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites
AU - Yang, Ruo Xi
AU - Skelton, Jonathan M.
AU - Da Silva, Estelina L.
AU - Frost, Jarvist M.
AU - Walsh, Aron
N1 - Publisher Copyright:
© 2020 Author(s).
PY - 2020/1/14
Y1 - 2020/1/14
N2 - Metal halide perovskites are promising candidates for next-generation photovoltaic and optoelectronic applications. The flexible nature of the octahedral network introduces complexity when understanding their physical behavior. It has been shown that these materials are prone to decomposition and phase competition, and the local crystal structure often deviates from the average space group symmetry. To make stable phase-pure perovskites, understanding their structure-composition relations is of central importance. We demonstrate, from lattice dynamics calculations, that the 24 inorganic perovskites ABX3 (A = Cs, Rb; B = Ge, Sn, Pb; X = F, Cl, Br, I) exhibit instabilities in their cubic phase. These instabilities include cation displacements, octahedral tilting, and Jahn-Teller distortions. The magnitudes of the instabilities vary depending on the chemical identity and ionic radii of the composition. The tilting instabilities are energetically dominant and reduce as the tolerance factor increases, whereas cation displacements and Jahn-Teller type distortions depend on the interactions between the constituent ions. We further considered representative tetragonal, orthorhombic, and monoclinic perovskite phases to obtain phonon-stable structures for each composition. This work provides insights into the thermodynamic driving force of the instabilities and will help guide computer simulations and experimental synthesis in material screening.
AB - Metal halide perovskites are promising candidates for next-generation photovoltaic and optoelectronic applications. The flexible nature of the octahedral network introduces complexity when understanding their physical behavior. It has been shown that these materials are prone to decomposition and phase competition, and the local crystal structure often deviates from the average space group symmetry. To make stable phase-pure perovskites, understanding their structure-composition relations is of central importance. We demonstrate, from lattice dynamics calculations, that the 24 inorganic perovskites ABX3 (A = Cs, Rb; B = Ge, Sn, Pb; X = F, Cl, Br, I) exhibit instabilities in their cubic phase. These instabilities include cation displacements, octahedral tilting, and Jahn-Teller distortions. The magnitudes of the instabilities vary depending on the chemical identity and ionic radii of the composition. The tilting instabilities are energetically dominant and reduce as the tolerance factor increases, whereas cation displacements and Jahn-Teller type distortions depend on the interactions between the constituent ions. We further considered representative tetragonal, orthorhombic, and monoclinic perovskite phases to obtain phonon-stable structures for each composition. This work provides insights into the thermodynamic driving force of the instabilities and will help guide computer simulations and experimental synthesis in material screening.
UR - http://www.scopus.com/inward/record.url?scp=85077940862&partnerID=8YFLogxK
U2 - 10.1063/1.5131575
DO - 10.1063/1.5131575
M3 - Article
C2 - 31941301
AN - SCOPUS:85077940862
SN - 0021-9606
VL - 152
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 2
M1 - 024703
ER -