Anharmonic lattice relaxation during nonradiative carrier capture

Sunghyun Kim, Samantha N. Hood, Aron Walsh

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Lattice vibrations of point defects are essential for understanding nonradiative electron and hole capture in semiconductors as they govern properties including persistent photoconductivity and the Shockley-Read-Hall recombination rate. Although the harmonic approximation is sufficient to describe a defect with small lattice relaxation, for cases of large lattice relaxation it is likely to break down. We describe a first-principles procedure to account for anharmonic carrier capture and apply it to the important case of the DX center in GaAs. This is a system where the harmonic approximation grossly fails. Our treatment of the anharmonic Morse-like potentials accurately describes the observed electron capture barrier, predicting the absence of quantum tunneling at low temperature, and a high hole capture rate that is independent of temperature. The model also explains the origin of the composition-invariant electron emission barrier. These results highlight an important shortcoming of the standard approach for describing point defect ionization that is accompanied by large lattice relaxation, where charge transfer occurs far from the equilibrium configuration.

Original languageEnglish
Article number041202
JournalPhysical Review B
Volume100
Issue number4
DOIs
StatePublished - 22 Jul 2019

Bibliographical note

Publisher Copyright:
© 2019 American Physical Society.

Fingerprint

Dive into the research topics of 'Anharmonic lattice relaxation during nonradiative carrier capture'. Together they form a unique fingerprint.

Cite this