Abstract
Accurate localization of anatomical landmarks has a critical role in clinical diagnosis, treatment planning, and research. Most existing deep learning methods for anatomical landmark localization rely on heatmap regression-based learning, which generates label representations as 2D Gaussian distributions centered at the labeled coordinates of each of the landmarks and integrates them into a single spatial resolution heatmap. However, the accuracy of this method is limited by the resolution of the heatmap, which restricts its ability to capture finer details. In this study, we introduce a multiresolution heatmap learning strategy that enables the network to capture semantic feature representations precisely using multiresolution heatmaps generated from the feature representations at each resolution independently, resulting in improved localization accuracy. Moreover, we propose a novel network architecture called hybrid transformer-CNN (HTC), which combines the strengths of both CNN and vision transformer models to improve the network’s ability to effectively extract both local and global representations. Extensive experiments demonstrated that our approach outperforms state-of-the-art deep learning-based anatomical landmark localization networks on the numerical XCAT 2D projection images and two public X-ray landmark detection benchmark datasets. Our code is available at https://github.com/seriee/Multiresolution-HTC.git.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings |
Editors | Hayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 433-443 |
Number of pages | 11 |
ISBN (Print) | 9783031439865 |
DOIs | |
State | Published - 2023 |
Event | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada Duration: 8 Oct 2023 → 12 Oct 2023 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 14225 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 8/10/23 → 12/10/23 |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
Keywords
- Anatomical landmark detection
- Hybrid transformer-CNN
- Multiresolution learning