Analysis on RF parameters of nanoscale tunneling field-effect transistor based on InAs/InGaAs/InP heterojunctions

Sung Yun Woo, Young Jun Yoon, Seongjae Cho, Jung Hee Lee, In Man Kang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Tunneling field-effect transistors (TFETs) based on the quantum mechanical band-to-band tunneling (BTBT) have advantages such as low off-current and subthreshold swing (S) below 60 mV/dec at room temperature. For these reasons, TFETs are considered as promising devices for low standby power (LSTP) applications. On the other hand, silicon (Si)-based TFETs have a drawback in low on-state current (Ion) drivability. In this work, we suggest a gate-all-around (GAA) TFET based on compound semiconductors to improve device performances. The proposed device materials consist of InAs (source), InGaAs (channel), and InP (drain). According to the composition (x) of Ga in In1?xGaxAs layer of the channel region, simulated devices have been investigated in terms of both direct-current (DC) and RF parameters including tunneling rate, transconductance (gm), gate capacitance (Cg), intrinsic delay time (t ), cut-off frequency (fT ) and maximum oscillation frequency (fmax). In this study, the obtained maximum values of , fT , and fmax for GAA InAs/In0.9Ga0.1As/InP heterojunction TFET were 21.2 fs, 7 THz, and 18 THz, respectively.

Original languageEnglish
Pages (from-to)8133-8136
Number of pages4
JournalJournal of Nanoscience and Nanotechnology
Volume13
Issue number12
DOIs
StatePublished - Dec 2013

Keywords

  • Band-to-Band Tunneling
  • InAs/InGaAs/InP Heterojunction
  • RF Parameters
  • Tunneling Field-Effect Transistor

Fingerprint

Dive into the research topics of 'Analysis on RF parameters of nanoscale tunneling field-effect transistor based on InAs/InGaAs/InP heterojunctions'. Together they form a unique fingerprint.

Cite this