Analysis for doubly repeated omics data from crossover design

Sunghoon Choi, Soo Yeon Park, Hoejin Kim, Oran Kwon, Taesung Park

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Some crossover clinical trials produce doubly repeated omics data with two repeated factors. Linear mixed effect models (LMMs) are commonly applied to the data from the crossover design focusing on the analysis of repeatedly observed omics data themselves. Alternatively, the univariate analyses using the single summary measurements such as differences between time points and incremental area under curve (iAUC) are also widely used. In this study, we compare the performance of both methods for real doubly repeated omics data from a crossover study.

Original languageEnglish
Title of host publicationProceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
EditorsKevin Burrage, Qian Zhu, Yunlong Liu, Tianhai Tian, Yadong Wang, Xiaohua Tony Hu, Qinghua Jiang, Jiangning Song, Shinichi Morishita, Kevin Burrage, Guohua Wang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1749-1752
Number of pages4
ISBN (Electronic)9781509016105
DOIs
StatePublished - 17 Jan 2017
Event2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016 - Shenzhen, China
Duration: 15 Dec 201618 Dec 2016

Publication series

NameProceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016

Conference

Conference2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
Country/TerritoryChina
CityShenzhen
Period15/12/1618/12/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Crossover design
  • Linear mixed effect model
  • Repeated measurements

Fingerprint

Dive into the research topics of 'Analysis for doubly repeated omics data from crossover design'. Together they form a unique fingerprint.

Cite this