Abstract
We propose a new invariant sign test for random walks against general stationary processes and develop a theory for the test. In addition to the exact binomial null distribution of the test, we establish various important properties of the test: the consistency against a wide class of possibly nonlinear stationary autoregressive conditionally heteroscedastic processes and/or heavy-tailed errors; a local asymptotic power advantage over the classical Dickey-Fuller test; and invariance to monotone data transformations, to conditional heteroscedasticity and to heavy-tailed errors. Using the sign test, we also investigate various interrelated issues such as M-estimator, exact confidence interval, sign test for serial correlation, robust inference for a cointegration model, and discuss possible extensions to models with autocorrelated errors. Monte-Carlo experiments verify that the sign test has not only very stable sizes but also locally better powers than the parametric Dickey-Fuller test and the nonparametric tests of Granger and Hallman (1991. Journal of Time Series Analysis 12, 207-224) and Burridge and Guerre (1996. Econometric Theory 12, 705-719) for heteroscedastic and/or heavy tailed errors.
Original language | English |
---|---|
Pages (from-to) | 197-229 |
Number of pages | 33 |
Journal | Journal of Econometrics |
Volume | 102 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2001 |
Bibliographical note
Funding Information:The authors are greatly indebted to an associate editor, two referees, and Professor Yoon-Jae Whang for many constructive comments on the earlier version of this paper. This research was supported by a grant for BK-21 project from Korea Research Foundation.
Keywords
- Heteroscedasticity
- Nonlinear transformation
- Nonparametric sign test