An integrative approach for high-throughput screening and characterization of transcriptional regulators in Streptomyces coelicolor

Eunjung Song, Yung Hun Yang, Bo Rahm Lee, Eun Jung Kim, Ji Nu Kim, Sung Soo Park, Kwangwon Lee, Woo Seong Kim, Sungyong You, Daehee Hwang, Byung Gee Kim

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


In an age of burgeoning information on genomes and proteomes, determining the specific functions of a gene of interest is still a challenging task, especially genes whose functions cannot be predicted from their sequence information alone. To solve this problem, we have developed an integrative approach for discovering novel transcriptional regulators (TRs) playing critical roles in antibiotic production and decoding their regulatory networks in Streptomyces species which contain many regulatory genes for synthesis of secondary metabolites and cell differentiation to spores. The DNA affinity capture assay (DACA) coupled with clustering of DNA chip data was used to find new TRs controlling antibiotic biosynthetic gene clusters. Functions of these newly identified TRs were characterized using 96-well-based minimal media screening (antibiotic production mapping, APM), pH indicator method, comparative two-dimensional gel electrophoresis (2D-gel), reverse-transcription polymerase chain reaction (RT-PCR), electrophoretic mobility shift assay (EMSA), and scanning electron microscopy (SEM). Using these techniques, we were able to reconstruct a regulatory network describing how these new TRs collectively regulate antibiotic production. This proposed approach providing additional key regulators and their interactions to an existing incomplete regulatory network can also be applied in studying regulators in other bacteria of interest.

Original languageEnglish
Pages (from-to)57-67
Number of pages11
JournalPure and Applied Chemistry
Issue number1
StatePublished - 2010

Bibliographical note

Funding Information:
This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 20090083035), and Intelligent Micro System Center sponsored by the Korea Ministry of Commerce, Industry and Energy.


  • Analytical chemistry
  • Recommendations
  • Sampling
  • Soil
  • Terminology


Dive into the research topics of 'An integrative approach for high-throughput screening and characterization of transcriptional regulators in Streptomyces coelicolor'. Together they form a unique fingerprint.

Cite this