TY - JOUR
T1 - An instrumented tissue tester for measuring soft tissue property under the metatarsal heads in relation to metatarsophalangeal joint angle
AU - Chen, Wen Ming
AU - Phyau-Wui Shim, Victor
AU - Park, Seung Bum
AU - Lee, Taeyong
N1 - Funding Information:
This work was supported by a grant from the Temasek Defense Systems Institute (Project Number: TDSI/09-009/1 A ), Singapore.
PY - 2011/6/3
Y1 - 2011/6/3
N2 - Identification of the localized mechanical response of the plantar soft tissue pads underneath the metatarsal heads (i.e., sub-MTH pad) to external loading is key to understand and predict how it functions in a gait cycle. The mechanical response depends on various parameters, such as the external load (direction and rate), the sub-MTH tissue properties (anisotropy and viscoelasticity), and the configuration of the metatarsophalangeal (MTP) joint overlying the tissue. In this study, an instrument-driven tissue tester that incorporates a portable motorized indentor within a special foot positioning apparatus was developed for realistic in vivo mechanical characterization (i.e. tissue stiffness and force relaxation behavior) of the local sub-MTH pad with the MTP joint configured at various dorsiflexion angles associated with gait. The tester yields consistent results for tests on the 2nd sub-MTH pad. Measurement errors for the initial stiffness (for indentation depths ≤1. mm), end-point stiffness, and percentage force relaxation were less than 0.084. N/mm, 0.133. N/mm, and 0.127%, respectively, across all test configurations. The end-point tissue stiffness, which increased by 104.2% due to a 50° MTP joint dorsiflexion, also agreed with a previous investigation. In vivo tissue's force relaxation was shown to be pronounced (avg.=8.1%), even for a short holding-time interval. The proposed technique to facilitate study of the dependence of the local sub-MTH pad and tissue response on the MTP joint angle might be preferable to methods that focus solely on measurement of tissue property because under physiologic conditions the sub-MTH pad elasticity may vary in gait, to adapt to drastically changing mechanical demands in the sub-MTH region of the terminal stance-phase, where MTP joint dorsiflexion occurs.
AB - Identification of the localized mechanical response of the plantar soft tissue pads underneath the metatarsal heads (i.e., sub-MTH pad) to external loading is key to understand and predict how it functions in a gait cycle. The mechanical response depends on various parameters, such as the external load (direction and rate), the sub-MTH tissue properties (anisotropy and viscoelasticity), and the configuration of the metatarsophalangeal (MTP) joint overlying the tissue. In this study, an instrument-driven tissue tester that incorporates a portable motorized indentor within a special foot positioning apparatus was developed for realistic in vivo mechanical characterization (i.e. tissue stiffness and force relaxation behavior) of the local sub-MTH pad with the MTP joint configured at various dorsiflexion angles associated with gait. The tester yields consistent results for tests on the 2nd sub-MTH pad. Measurement errors for the initial stiffness (for indentation depths ≤1. mm), end-point stiffness, and percentage force relaxation were less than 0.084. N/mm, 0.133. N/mm, and 0.127%, respectively, across all test configurations. The end-point tissue stiffness, which increased by 104.2% due to a 50° MTP joint dorsiflexion, also agreed with a previous investigation. In vivo tissue's force relaxation was shown to be pronounced (avg.=8.1%), even for a short holding-time interval. The proposed technique to facilitate study of the dependence of the local sub-MTH pad and tissue response on the MTP joint angle might be preferable to methods that focus solely on measurement of tissue property because under physiologic conditions the sub-MTH pad elasticity may vary in gait, to adapt to drastically changing mechanical demands in the sub-MTH region of the terminal stance-phase, where MTP joint dorsiflexion occurs.
KW - Foot
KW - Localized mechanical response
KW - Metatarsal head
KW - Metatarsophalangeal joint
KW - Soft-tissue pad
UR - http://www.scopus.com/inward/record.url?scp=79956079175&partnerID=8YFLogxK
U2 - 10.1016/j.jbiomech.2011.03.031
DO - 10.1016/j.jbiomech.2011.03.031
M3 - Article
C2 - 21513940
AN - SCOPUS:79956079175
VL - 44
SP - 1801
EP - 1804
JO - Journal of Biomechanics
JF - Journal of Biomechanics
SN - 0021-9290
IS - 9
ER -