TY - JOUR
T1 - An electromagnetic energy scavenger from direct airflow
AU - Kim, Seong Hyok
AU - Ji, Chang Hyeon
AU - Galle, Preston
AU - Herrault, Florian
AU - Wu, Xiaosong
AU - Lee, Jin Ho
AU - Choi, Chang Auk
AU - Allen, Mark G.
PY - 2009
Y1 - 2009
N2 - This paper presents two types of electromagnetic power generators exploiting direct conversion of airflow into mechanical vibration: (1) a windbelt-based vibratory linear energy scavenger targeting strong airflows and (2) a Helmholtz-resonator-based generator capable of scavenging energy from weaker airflows, i.e. environmental airflows. Both devices consist of two tightly coupled parts: a mechanical resonator, which produces high-frequency mechanical oscillation from quasi-constant airflow, and a permanent magnet/coil system, which generates electrical power from the resonator's motion. The proposed energy scavengers obviate the typically required matching of the resonant frequencies of the scavenger and the ambient energy sources it taps. This enables a device that is simpler, smaller and higher-frequency than the previously reported resonant power generator. The windbelt-based energy scavenger demonstrated a peak-to-peak output voltage of 81 mV at 0.53 kHz, from an input pressure of 50 kPa. The Helmholtz-resonator-based energy scavenger achieved a peak-to-peak output voltage of 4 mV at 1.4 kHz, from an input pressure of 0.2 kPa, which is equivalent to 5 m s-1 (10 mph) of wind velocity.
AB - This paper presents two types of electromagnetic power generators exploiting direct conversion of airflow into mechanical vibration: (1) a windbelt-based vibratory linear energy scavenger targeting strong airflows and (2) a Helmholtz-resonator-based generator capable of scavenging energy from weaker airflows, i.e. environmental airflows. Both devices consist of two tightly coupled parts: a mechanical resonator, which produces high-frequency mechanical oscillation from quasi-constant airflow, and a permanent magnet/coil system, which generates electrical power from the resonator's motion. The proposed energy scavengers obviate the typically required matching of the resonant frequencies of the scavenger and the ambient energy sources it taps. This enables a device that is simpler, smaller and higher-frequency than the previously reported resonant power generator. The windbelt-based energy scavenger demonstrated a peak-to-peak output voltage of 81 mV at 0.53 kHz, from an input pressure of 50 kPa. The Helmholtz-resonator-based energy scavenger achieved a peak-to-peak output voltage of 4 mV at 1.4 kHz, from an input pressure of 0.2 kPa, which is equivalent to 5 m s-1 (10 mph) of wind velocity.
UR - http://www.scopus.com/inward/record.url?scp=70350625237&partnerID=8YFLogxK
U2 - 10.1088/0960-1317/19/9/094010
DO - 10.1088/0960-1317/19/9/094010
M3 - Article
AN - SCOPUS:70350625237
SN - 0960-1317
VL - 19
JO - Journal of Micromechanics and Microengineering
JF - Journal of Micromechanics and Microengineering
IS - 9
M1 - 094010
ER -