Abstract
A series of gold (Au) nanostructures, having different morphologies, were fabricated for amperometric selective detection of carbon monoxide (CO), a biologically important signaling molecule. Au layers were electrodeposited from a precursor solution of 7 mM HAuCl4 with a constant deposition charge (0.04 C) at various deposition potentials. The obtained Au nanostructures became rougher and spikier as the deposition potential lowered from 0.45 V to 0.05 V (vs. Ag/AgCl). As prepared Au layers showed different hydrophobicity: The sharper morphology, the greater hydrophobicity. The Au deposit formed at 0.05 V had the sharpest shape and the greatest surface hydrophobicity. The sensitivity of an Au deposit for amperometric CO sensing was enhanced as the Au surface exhibits higher hydrophobicity. In fact, CO selectivity over common electroactive biological interferents (L-ascorbic acid, 4-acetamidophenol, 4-aminobutyric acid and nitrite) was improved eminently once the Au deposit became more hydrophobic. The most hydrophobic Au was also confirmed to sense CO exclusively without responding to nitric oxide, another similar gas signaling molecule, in contrast to a hydrophobic platinum (Pt) counterpart. This study presents a feasible strategy to enhance the sensitivity and selectivity for amperometric CO sensing via the fine control of Au electrode nanostructures.
Original language | English |
---|---|
Article number | 334 |
Journal | Biosensors |
Volume | 11 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2021 |
Bibliographical note
Funding Information:Funding: This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (NRF-2020R1A2B5B01001984) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025340).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Amperometric sensing
- Carbon monoxide
- Electrodeposition
- Gold
- Surface hydrophobicity