Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique

Jongpal Kim, Takhyung Lee, Jihoon Kim, Hyoungho Ko

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

To overcome a large DC offset, ambient light interference, and optical path variation, a robust PPG readout chip is fabricated using 0.13-μm CMOS process. Against the large DC offset, a saturation detection and current feedback method can compensate a current of up to 30 μA. To be robust against optical path variation, an automatic emitting light compensation method is adopted. To remove the ambient light interference, we propose an alternating sampling and charge redistribution technique, in which no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26 μW and has a input referred current noise of 260 pArms.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6441-6444
Number of pages4
ISBN (Electronic)9781424492718
DOIs
StatePublished - 4 Nov 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

Fingerprint

Dive into the research topics of 'Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique'. Together they form a unique fingerprint.

Cite this