TY - JOUR
T1 - Adsorption of uranyl ion on hexagonal boron nitride for remediation of real U-contaminated soil and its interpretation using random forest
AU - Jun, Byung Moon
AU - Chae, Sung Ho
AU - Kim, Deokhwan
AU - Jung, Jun Young
AU - Kim, Tack Jin
AU - Nam, Seong Nam
AU - Yoon, Yeomin
AU - Park, Chanhyuk
AU - Rho, Hojung
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5/5
Y1 - 2024/5/5
N2 - Acid leaching has been widely applied to treat contaminated soil, however, it contains several inorganic pollutants. The decommissioning of nuclear power plants introduces radioactive and soluble U(VI), a substance posing chemical toxicity to humans. Our investigation sought to ascertain the efficacy of hexagonal boron nitride (h-BN), an highly efficient adsorbent, in treating U(VI) in wastewater. The adsorption equilibrium of U(VI) by h-BN reached saturation within a mere 2 h. The adsorption of U(VI) by h-BN appears to be facilitated through electrostatic attraction, as evidenced by the observed impact of pH variations, acidic agents (i.e., HCl or H2SO4), and the presence of background ions on the adsorption performance. A reusability test demonstrated the successful completion of five cycles of adsorption/desorption, relying on the surface characteristics of h-BN as influenced by solution pH. Based on the experimental variables of initial U(VI) concentration, exposure time, temperature, pH, and the presence of background ions/organic matter, a feature importance analysis using random forest (RF) was carried out to evaluate the correlation between performances and conditions. To the best of our knowledge, this study is the first attempt to conduct the adsorption of U(VI) generated from real contaminated soil by h-BN, followed by interpretation of the correlation between performance and conditions using RF. Lastly, a. plausible adsorption mechanism between U(VI) and h-BN was explained based on the experimental results, characterizations, and a. comparison with previous adsorption studies on the removal of heavy metals by h-BN.
AB - Acid leaching has been widely applied to treat contaminated soil, however, it contains several inorganic pollutants. The decommissioning of nuclear power plants introduces radioactive and soluble U(VI), a substance posing chemical toxicity to humans. Our investigation sought to ascertain the efficacy of hexagonal boron nitride (h-BN), an highly efficient adsorbent, in treating U(VI) in wastewater. The adsorption equilibrium of U(VI) by h-BN reached saturation within a mere 2 h. The adsorption of U(VI) by h-BN appears to be facilitated through electrostatic attraction, as evidenced by the observed impact of pH variations, acidic agents (i.e., HCl or H2SO4), and the presence of background ions on the adsorption performance. A reusability test demonstrated the successful completion of five cycles of adsorption/desorption, relying on the surface characteristics of h-BN as influenced by solution pH. Based on the experimental variables of initial U(VI) concentration, exposure time, temperature, pH, and the presence of background ions/organic matter, a feature importance analysis using random forest (RF) was carried out to evaluate the correlation between performances and conditions. To the best of our knowledge, this study is the first attempt to conduct the adsorption of U(VI) generated from real contaminated soil by h-BN, followed by interpretation of the correlation between performance and conditions using RF. Lastly, a. plausible adsorption mechanism between U(VI) and h-BN was explained based on the experimental results, characterizations, and a. comparison with previous adsorption studies on the removal of heavy metals by h-BN.
KW - Boron nitride
KW - Random forest
KW - Soil washing
KW - Uranium adsorption
UR - http://www.scopus.com/inward/record.url?scp=85188818213&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2024.134072
DO - 10.1016/j.jhazmat.2024.134072
M3 - Article
C2 - 38522201
AN - SCOPUS:85188818213
SN - 0304-3894
VL - 469
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 134072
ER -