Abstract
Fisher and Muller's theory that recombination speeds adaptation by eliminating competition among beneficial mutations has proved a popular explanation for the advantage of sex. Recent theoretical studies have attempted to quantify the speed of adaptation under the Fisher-Muller model, partly in an attempt to understand the role of "clonal interference" in microbial experimental evolution. We reexamine adaptation in sexuals vs. asexuals, using a model of DNA sequence evolution. In this model, a modest number of sites can mutate to beneficial alleles and the fitness effects of these mutations are unequal. We study (1) transition probabilities to different beneficial mutations; (2) waiting times to the first and the last substitutions of beneficial mutations; and (3) trajectories of mean fitness through time. We find that some of these statistics are surprisingly similar between sexuals and asexuals. These results highlight the importance of the choice of substitution model in assessing the Fisher-Muller advantage of sex.
Original language | English |
---|---|
Pages (from-to) | 1377-1386 |
Number of pages | 10 |
Journal | Genetics |
Volume | 171 |
Issue number | 3 |
DOIs | |
State | Published - Nov 2005 |