Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k

Bryan S. Benn, Dare Ajibade, Angela Porta, Puneet Dhawan, Matthias Hediger, Ji Bin Peng, Yi Jiang, Taeg Oh Goo, Eui Bae Jeung, Liesbet Lieben, Roger Bouillon, Geert Carmeliet, Sylvia Christakos

Research output: Contribution to journalArticlepeer-review

214 Scopus citations

Abstract

To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D9k double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice (∼10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D 3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.

Original languageEnglish
Pages (from-to)3196-3205
Number of pages10
JournalEndocrinology
Volume149
Issue number6
DOIs
StatePublished - Jun 2008

Fingerprint

Dive into the research topics of 'Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k'. Together they form a unique fingerprint.

Cite this