Accelerating Probabilistic Volumetric Mapping using Ray-Tracing Graphics Hardware

Heajung Min, Kyung Min Han, Young J. Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Probabilistic volumetric mapping (PVM) represents a 3D environmental map for an autonomous robotic navigational task. A popular implementation such as Octomap is widely used in the robotics community for such a purpose. The Octomap relies on an octree to represent a PVM and its main bottleneck lies in massive ray-shooting to determine the occupancy of the underlying volumetric voxel grids. In this paper, we propose GPU-based ray shooting to drastically improve the ray shooting performance in Octomap. Our main idea is based on the use of recent ray-tracing RTX GPU, mainly designed for real-time photo-realistic computer graphics and the accompanying graphics API, known as DXR. Our ray-shooting first maps leaf-level voxels in the given octree to a set of axis-aligned bounding boxes (AABBs) and employ massively parallel ray shooting on them using GPUs to find free and occupied voxels. These are fed back into the CPU to update the voxel occupancy and restructure the octree. In our experiments, we have observed more than three-orders-of-magnitude performance improvement in terms of ray shooting using ray-tracing RTX GPU over a state-of-the-art Octomap CPU implementation, where the benchmarking environments consist of more than 77K points and 25K∼34K voxel grids.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5440-5445
Number of pages6
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

Bibliographical note

Funding Information:
This project was supported in part by the ITRC/IITP program (IITP-2021-2020-0-01460) and the NRF (2017R1A2B3012701) in South Korea.

Publisher Copyright:
© 2021 IEEE

Fingerprint

Dive into the research topics of 'Accelerating Probabilistic Volumetric Mapping using Ray-Tracing Graphics Hardware'. Together they form a unique fingerprint.

Cite this