Accelerated simulation of discrete event dynamic systems via a multi-fidelity modeling framework

Seon Han Choi, Kyung Min Seo, Tag Gon Kim

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Simulation analysis has been performed for simulation experiments of all possible input combinations as a "what-if" analysis, which causes the simulation to be extremely time-consuming. To resolve this problem, this paper proposes a multi-fidelity modeling framework for enhancing simulation speed while minimizing simulation accuracy loss. A target system for this framework is a discrete event dynamic system. The dynamic property of the system facilitates the development of variable fidelity models for the target system due to its high computational cost; and the discrete event property allows for determining when to change the fidelity within a simulation scenario. For formal representation, the paper defines several key concepts such as an interest region, a fidelity change condition, and a selection model. These concepts are integrated into the framework to allow for the achievement of a condition-based disjunction of high- and low-fidelity simulations within a scenario. The proposed framework is applied to two case studies: unmanned underwater and urban transportation vehicles. The results show that simulation speed increases at least 1.21 times with a 5% accuracy loss. We expect that the proposed framework will resolve a computationally expensive problem in the simulation analysis of discrete event dynamic systems.

Original languageEnglish
Article number1056
JournalApplied Sciences (Switzerland)
Issue number10
StatePublished - 13 Oct 2017

Bibliographical note

Publisher Copyright:
© 2017 by the authors.


  • Differential equation
  • Discrete event dynamic system
  • Discrete event system specification (DEVS)
  • Simulation analysis
  • Simulation speedup
  • System modeling


Dive into the research topics of 'Accelerated simulation of discrete event dynamic systems via a multi-fidelity modeling framework'. Together they form a unique fingerprint.

Cite this