TY - JOUR
T1 - Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress
AU - Park, Jong Soo
AU - Park, Jong Beom
AU - Park, In Joo
AU - Park, Eun Young
PY - 2014/6
Y1 - 2014/6
N2 - Purposes: Diabetes mellitus (DM) is thought to be an important aetiological factor in intervertebral disc degeneration. A glucose-mediated increase of oxidative stress is a major causative factor in development of diseases associated with DM. The aim of this study was to investigate the effect of high glucose on mitochondrial damage, oxidative stress and senescence of young annulus fibrosus (AF) cells. Methods: AF cells were isolated from four-week-old young rats, cultured, and placed in either 10% FBS (normal control) or 10% FBS plus two different high glucose concentrations (0.1 M and 0.2 M) (experimental conditions) for one and three days. We identified and quantified the mitochondrial damage and reactive oxygen species (ROS) (oxidative stress). We also identified and quantified the occurrence of senescence and telomerase activity. Finally, the expressions of proteins were determined related to replicative senescence (p53-p21-pRB) and stress-induced senescence (p16-pRB). Results: Two high glucoses enhanced the mitochondrial damage in young rat AF cells, which resulted in an excessive generation of ROS in a dose- and time-dependent manner for one and three days compared to normal control. Two high glucose concentrations increased the occurrence of senescence of young AF cells in a dose- and time-dependent manner. Telomerase activity declined in a dose- and time-dependent manner. Both high glucose treatments increased the expressions of p16 and pRB proteins in young rat AF cells for one and three days. However, compared to normal control, the expressions of p53 and p21 proteins were decreased in young rat AF cells treated with both high glucoses for one and three days. Conclusions: The present study demonstrated that high glucose-induced oxidative stress accelerates premature stress-induced senescence in young rat AF cells in a doseand time-dependent manner rather than replicative senescence. These results suggest that prevention of excessive generation of oxidative stress by strict blood glucose control could be important to prevent or to delay premature intervertebral disc degeneration in young patients with DM.
AB - Purposes: Diabetes mellitus (DM) is thought to be an important aetiological factor in intervertebral disc degeneration. A glucose-mediated increase of oxidative stress is a major causative factor in development of diseases associated with DM. The aim of this study was to investigate the effect of high glucose on mitochondrial damage, oxidative stress and senescence of young annulus fibrosus (AF) cells. Methods: AF cells were isolated from four-week-old young rats, cultured, and placed in either 10% FBS (normal control) or 10% FBS plus two different high glucose concentrations (0.1 M and 0.2 M) (experimental conditions) for one and three days. We identified and quantified the mitochondrial damage and reactive oxygen species (ROS) (oxidative stress). We also identified and quantified the occurrence of senescence and telomerase activity. Finally, the expressions of proteins were determined related to replicative senescence (p53-p21-pRB) and stress-induced senescence (p16-pRB). Results: Two high glucoses enhanced the mitochondrial damage in young rat AF cells, which resulted in an excessive generation of ROS in a dose- and time-dependent manner for one and three days compared to normal control. Two high glucose concentrations increased the occurrence of senescence of young AF cells in a dose- and time-dependent manner. Telomerase activity declined in a dose- and time-dependent manner. Both high glucose treatments increased the expressions of p16 and pRB proteins in young rat AF cells for one and three days. However, compared to normal control, the expressions of p53 and p21 proteins were decreased in young rat AF cells treated with both high glucoses for one and three days. Conclusions: The present study demonstrated that high glucose-induced oxidative stress accelerates premature stress-induced senescence in young rat AF cells in a doseand time-dependent manner rather than replicative senescence. These results suggest that prevention of excessive generation of oxidative stress by strict blood glucose control could be important to prevent or to delay premature intervertebral disc degeneration in young patients with DM.
KW - High glucose
KW - Intervertebral disc degeneration
KW - Oxidative stress
KW - Premature stress-induced senescence
KW - Replicative senescence
KW - Young annulus fibrosus cells
UR - http://www.scopus.com/inward/record.url?scp=84904559661&partnerID=8YFLogxK
U2 - 10.1007/s00264-014-2296-z
DO - 10.1007/s00264-014-2296-z
M3 - Article
C2 - 24535573
AN - SCOPUS:84904559661
SN - 0341-2695
VL - 38
SP - 1311
EP - 1320
JO - International Orthopaedics
JF - International Orthopaedics
IS - 6
ER -