TY - JOUR
T1 - Accelerated electron paramagnetic resonance imaging using partial Fourier compressed sensing reconstruction
AU - Chou, Chia Chu
AU - Chandramouli, Gadisetti V.R.
AU - Shin, Taehoon
AU - Devasahayam, Nallathamby
AU - McMillan, Alan
AU - Babadi, Behtash
AU - Gullapalli, Rao
AU - Cherukuri, Murali
AU - Zhuo, Jiachen
N1 - Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Purpose Electron paramagnetic resonance (EPR) imaging has evolved as a promising tool to provide non-invasive assessment of tissue oxygenation levels. Due to the extremely short T2 relaxation time of electrons, single point imaging (SPI) is used in EPRI, limiting achievable spatial and temporal resolution. This presents a problem when attempting to measure changes in hypoxic state. In order to capture oxygen variation in hypoxic tissues and localize cycling hypoxia regions, an accelerated EPRI imaging method with minimal loss of information is needed. Methods We present an image acceleration technique, partial Fourier compressed sensing (PFCS), that combines compressed sensing (CS) and partial Fourier reconstruction. PFCS augments the original CS equation using conjugate symmetry information for missing measurements. To further improve image quality in order to reconstruct low-resolution EPRI images, a projection onto convex sets (POCS)-based phase map and a spherical-sampling mask are used in the reconstruction process. The PFCS technique was used in phantoms and in vivo SCC7 tumor mice to evaluate image quality and accuracy in estimating O2 concentration. Results In both phantom and in vivo experiments, PFCS demonstrated the ability to reconstruct images more accurately with at least a 4-fold acceleration compared to traditional CS. Meanwhile, PFCS is able to better preserve the distinct spatial pattern in a phantom with a spatial resolution of 0.6 mm. On phantoms containing Oxo63 solution with different oxygen concentrations, PFCS reconstructed linewidth maps that were discriminative of different O2 concentrations. Moreover, PFCS reconstruction of partially sampled data provided a better discrimination of hypoxic and oxygenated regions in a leg tumor compared to traditional CS reconstructed images. Conclusions EPR images with an acceleration factor of four are feasible using PFCS with reasonable assessment of tissue oxygenation. The technique can greatly enhance EPR applications and improve our understanding cycling hypoxia. Moreover this technique can be easily extended to various MRI applications.
AB - Purpose Electron paramagnetic resonance (EPR) imaging has evolved as a promising tool to provide non-invasive assessment of tissue oxygenation levels. Due to the extremely short T2 relaxation time of electrons, single point imaging (SPI) is used in EPRI, limiting achievable spatial and temporal resolution. This presents a problem when attempting to measure changes in hypoxic state. In order to capture oxygen variation in hypoxic tissues and localize cycling hypoxia regions, an accelerated EPRI imaging method with minimal loss of information is needed. Methods We present an image acceleration technique, partial Fourier compressed sensing (PFCS), that combines compressed sensing (CS) and partial Fourier reconstruction. PFCS augments the original CS equation using conjugate symmetry information for missing measurements. To further improve image quality in order to reconstruct low-resolution EPRI images, a projection onto convex sets (POCS)-based phase map and a spherical-sampling mask are used in the reconstruction process. The PFCS technique was used in phantoms and in vivo SCC7 tumor mice to evaluate image quality and accuracy in estimating O2 concentration. Results In both phantom and in vivo experiments, PFCS demonstrated the ability to reconstruct images more accurately with at least a 4-fold acceleration compared to traditional CS. Meanwhile, PFCS is able to better preserve the distinct spatial pattern in a phantom with a spatial resolution of 0.6 mm. On phantoms containing Oxo63 solution with different oxygen concentrations, PFCS reconstructed linewidth maps that were discriminative of different O2 concentrations. Moreover, PFCS reconstruction of partially sampled data provided a better discrimination of hypoxic and oxygenated regions in a leg tumor compared to traditional CS reconstructed images. Conclusions EPR images with an acceleration factor of four are feasible using PFCS with reasonable assessment of tissue oxygenation. The technique can greatly enhance EPR applications and improve our understanding cycling hypoxia. Moreover this technique can be easily extended to various MRI applications.
KW - Compressed sensing
KW - Cycling hypoxia
KW - Electron paramagnetic resonance imaging
KW - Single point imaging
KW - Virtual coils
UR - http://www.scopus.com/inward/record.url?scp=84998996748&partnerID=8YFLogxK
U2 - 10.1016/j.mri.2016.10.029
DO - 10.1016/j.mri.2016.10.029
M3 - Article
C2 - 27989911
AN - SCOPUS:84998996748
SN - 0730-725X
VL - 37
SP - 90
EP - 99
JO - Magnetic Resonance Imaging
JF - Magnetic Resonance Imaging
ER -