TY - JOUR
T1 - A novel selenonucleoside suppresses tumor growth by targeting Skp2 degradation in paclitaxel-resistant prostate cancer
AU - Byun, Woong Sub
AU - Jin, Minkyung
AU - Yu, Jinha
AU - Kim, Won Kyung
AU - Song, Jayoung
AU - Chung, Hwa Jin
AU - Jeong, Lak Shin
AU - Lee, Sang Kook
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2018/12
Y1 - 2018/12
N2 - Prostate cancer (PC) is the most common disease in men over age 50, and its prevalence rate has been gradually increasing since 1980. Taxane-derived anticancer agents are the primary agents used to treat metastatic prostate cancer patients; however, the side effects and acquired drug resistance limit the success of these therapies. Because there is no specific treatment for paclitaxel-resistant prostate cancer, it is necessary to develop new targets and therapeutic strategies to overcome the acquired resistance. In this study, the antitumor activity of a novel selenonucleoside (4′-selenofuranosyl-2,6-dichloropurine, LJ-2618), a third-generation nucleoside, and its plausible mechanisms of action in paclitaxel-resistant prostate cancer (PC-3-Pa) cells were investigated. The established PC-3-Pa cells exhibited over 100-fold resistance against paclitaxel compared to the paclitaxel-sensitive PC-3 cells. LJ-2618, however, effectively inhibited the proliferation of both cell lines with similar IC50 values in vitro. In PC-3-Pa cells, the activated PI3K/Akt signaling pathway was suppressed by LJ-2618 treatment. In addition, Skp2 was found to be over-expressed in paclitaxel-resistant cells, and the transfection of Skp2 siRNA recovered the sensitivity of paclitaxel in PC-3-Pa cells. Furthermore, LJ-2618 significantly down-regulated Skp2 expression in PC-3-Pa cells by promoting degradation and inducing destabilization of Skp2, which triggers G2/M cell cycle arrest. In a xenograft mouse model implanted with PC-3-Pa cells, LJ-2618 (3 or 10 mg/kg) effectively inhibited tumor growth with the enhancement of Skp2 degradation and induction of p27 expression in tumor tissues. These findings suggest that LJ-2618 may have potential for overcoming paclitaxel resistance via promoting Skp2 degradation and stabilizing p27 expression in PC-3-Pa cells. Therefore, the novel selenonucleoside LJ-2618 may lead to the development of a new treatment strategy for patients with paclitaxel-resistant, castration-resistant prostate cancer.
AB - Prostate cancer (PC) is the most common disease in men over age 50, and its prevalence rate has been gradually increasing since 1980. Taxane-derived anticancer agents are the primary agents used to treat metastatic prostate cancer patients; however, the side effects and acquired drug resistance limit the success of these therapies. Because there is no specific treatment for paclitaxel-resistant prostate cancer, it is necessary to develop new targets and therapeutic strategies to overcome the acquired resistance. In this study, the antitumor activity of a novel selenonucleoside (4′-selenofuranosyl-2,6-dichloropurine, LJ-2618), a third-generation nucleoside, and its plausible mechanisms of action in paclitaxel-resistant prostate cancer (PC-3-Pa) cells were investigated. The established PC-3-Pa cells exhibited over 100-fold resistance against paclitaxel compared to the paclitaxel-sensitive PC-3 cells. LJ-2618, however, effectively inhibited the proliferation of both cell lines with similar IC50 values in vitro. In PC-3-Pa cells, the activated PI3K/Akt signaling pathway was suppressed by LJ-2618 treatment. In addition, Skp2 was found to be over-expressed in paclitaxel-resistant cells, and the transfection of Skp2 siRNA recovered the sensitivity of paclitaxel in PC-3-Pa cells. Furthermore, LJ-2618 significantly down-regulated Skp2 expression in PC-3-Pa cells by promoting degradation and inducing destabilization of Skp2, which triggers G2/M cell cycle arrest. In a xenograft mouse model implanted with PC-3-Pa cells, LJ-2618 (3 or 10 mg/kg) effectively inhibited tumor growth with the enhancement of Skp2 degradation and induction of p27 expression in tumor tissues. These findings suggest that LJ-2618 may have potential for overcoming paclitaxel resistance via promoting Skp2 degradation and stabilizing p27 expression in PC-3-Pa cells. Therefore, the novel selenonucleoside LJ-2618 may lead to the development of a new treatment strategy for patients with paclitaxel-resistant, castration-resistant prostate cancer.
KW - A novel selenonucleoside LJ-2618
KW - G/M cell cycle
KW - P27
KW - Paclitaxel-resistant prostate cancer
KW - Skp2
UR - http://www.scopus.com/inward/record.url?scp=85054461679&partnerID=8YFLogxK
U2 - 10.1016/j.bcp.2018.10.002
DO - 10.1016/j.bcp.2018.10.002
M3 - Article
C2 - 30292755
AN - SCOPUS:85054461679
SN - 0006-2952
VL - 158
SP - 84
EP - 94
JO - Biochemical Pharmacology
JF - Biochemical Pharmacology
ER -