TY - JOUR
T1 - A framework of automatic subject term assignment for text categorization
T2 - An indexing conception-based approach
AU - Chung, Eunkyung
AU - Miksa, Shawne
AU - Hastings, Samantha K.
PY - 2010/4
Y1 - 2010/4
N2 - The purpose of this study is to examine whether the understandings of subject-indexing processes conducted by human indexers have a positive impact on the effectiveness of automatic subject term assignment through text categorization (TC More specifically, human indexers' subject-indexing approaches, or conceptions, in conjunction with semantic sources were explored in the context of a typical scientific journal article dataset. Based on the premise that subject indexing approaches or conceptions with semantic sources are important for automatic subject term assignment through TC, this study proposed an indexing conception-based framework. For the purpose of this study, two research questions were explored: To what extent are semantic sources effective? To what extent are indexing conceptions effective? The experiments were conducted using a Support Vector Machine implementation in WEKA (I.H. Witten & E. Frank, 2000 Using F-measure, the experiment results showed that cited works, source title, and title were as effective as the full text while a keyword was found more effective than the full text. In addition, the findings showed that an indexing conceptionbased framework was more effective than the full text. The content-oriented and the document-oriented indexing approaches especially were found more effective than the full text. Among three indexing conceptionbased approaches, the content-oriented approach and the document-oriented approach were more effective than the domain-oriented approach. In other words, in the context of a typical scientific journal article dataset, the objective contents and authors' intentions were more desirable for automatic subject term assignment via TC than the possible users' needs. The findings of this study support that incorporation of human indexers' indexing approaches or conception in conjunction with semantic sources has a positive impact on the effectiveness of automatic subject term assignment.
AB - The purpose of this study is to examine whether the understandings of subject-indexing processes conducted by human indexers have a positive impact on the effectiveness of automatic subject term assignment through text categorization (TC More specifically, human indexers' subject-indexing approaches, or conceptions, in conjunction with semantic sources were explored in the context of a typical scientific journal article dataset. Based on the premise that subject indexing approaches or conceptions with semantic sources are important for automatic subject term assignment through TC, this study proposed an indexing conception-based framework. For the purpose of this study, two research questions were explored: To what extent are semantic sources effective? To what extent are indexing conceptions effective? The experiments were conducted using a Support Vector Machine implementation in WEKA (I.H. Witten & E. Frank, 2000 Using F-measure, the experiment results showed that cited works, source title, and title were as effective as the full text while a keyword was found more effective than the full text. In addition, the findings showed that an indexing conceptionbased framework was more effective than the full text. The content-oriented and the document-oriented indexing approaches especially were found more effective than the full text. Among three indexing conceptionbased approaches, the content-oriented approach and the document-oriented approach were more effective than the domain-oriented approach. In other words, in the context of a typical scientific journal article dataset, the objective contents and authors' intentions were more desirable for automatic subject term assignment via TC than the possible users' needs. The findings of this study support that incorporation of human indexers' indexing approaches or conception in conjunction with semantic sources has a positive impact on the effectiveness of automatic subject term assignment.
UR - http://www.scopus.com/inward/record.url?scp=77949855141&partnerID=8YFLogxK
U2 - 10.1002/asi.21272
DO - 10.1002/asi.21272
M3 - Article
AN - SCOPUS:77949855141
SN - 1532-2882
VL - 61
SP - 688
EP - 699
JO - Journal of the American Society for Information Science and Technology
JF - Journal of the American Society for Information Science and Technology
IS - 4
ER -