TY - JOUR
T1 - A fast minimum variance beamforming method using principal component analysis
AU - Kim, Kyuhong
AU - Park, Suhyun
AU - Kim, Jungho
AU - Park, Sung Bae
AU - Bae, Mooho
PY - 2014/6
Y1 - 2014/6
N2 - Minimum variance (MV) beamforming has been studied for improving the performance of a diagnostic ultrasound imaging system. However, it is not easy for the MV beamforming to be implemented in a real-time ultrasound imaging system because of the enormous amount of computation time associated with the covariance matrix inversion. In this paper, to address this problem, we propose a new fast MV beamforming method that almost optimally approximates the MV beamforming while reducing the computational complexity greatly through dimensionality reduction using principal component analysis (PCA). The principal components are estimated offline from pre-calculated conventional MV weights. Thus, the proposed method does not directly calculate the MV weights but approximates them by a linear combination of a few selected dominant principal components. The combinational weights are calculated in almost the same way as in MV beamforming, but in the transformed domain of beamformer input signal by the PCA, where the dimension of the transformed covariance matrix is identical to the number of some selected principal component vectors. Both computer simulation and experiment were carried out to verify the effectiveness of the proposed method with echo signals from simulation as well as phantom and in vivo experiments. It is confirmed that our method can reduce the dimension of the covariance matrix down to as low as 2 × 2 while maintaining the good image quality of MV beamforming.
AB - Minimum variance (MV) beamforming has been studied for improving the performance of a diagnostic ultrasound imaging system. However, it is not easy for the MV beamforming to be implemented in a real-time ultrasound imaging system because of the enormous amount of computation time associated with the covariance matrix inversion. In this paper, to address this problem, we propose a new fast MV beamforming method that almost optimally approximates the MV beamforming while reducing the computational complexity greatly through dimensionality reduction using principal component analysis (PCA). The principal components are estimated offline from pre-calculated conventional MV weights. Thus, the proposed method does not directly calculate the MV weights but approximates them by a linear combination of a few selected dominant principal components. The combinational weights are calculated in almost the same way as in MV beamforming, but in the transformed domain of beamformer input signal by the PCA, where the dimension of the transformed covariance matrix is identical to the number of some selected principal component vectors. Both computer simulation and experiment were carried out to verify the effectiveness of the proposed method with echo signals from simulation as well as phantom and in vivo experiments. It is confirmed that our method can reduce the dimension of the covariance matrix down to as low as 2 × 2 while maintaining the good image quality of MV beamforming.
UR - http://www.scopus.com/inward/record.url?scp=84901311857&partnerID=8YFLogxK
U2 - 10.1109/TUFFC.2014.2989
DO - 10.1109/TUFFC.2014.2989
M3 - Article
AN - SCOPUS:84901311857
SN - 0885-3010
VL - 61
SP - 930
EP - 945
JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
IS - 6
M1 - 6819209
ER -