TY - JOUR
T1 - A dual spectral projected gradient method for log-determinant semidefinite problems
AU - Nakagaki, Takashi
AU - Fukuda, Mituhiro
AU - Kim, Sunyoung
AU - Yamashita, Makoto
N1 - Funding Information:
M. F. was partially supported by JSPS KAKENHI (Grant No. 26330024), and by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University; S. K. was supported by NRF 2017-R1A2B2005119; M. Y. was partially supported by JSPS KAKENHI (Grant No. 18K11176)
Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - We extend the result on the spectral projected gradient method by Birgin et al. in 2000 to a log-determinant semidefinite problem with linear constraints and propose a spectral projected gradient method for the dual problem. Our method is based on alternate projections on the intersection of two convex sets, which first projects onto the box constraints and then onto a set defined by a linear matrix inequality. By exploiting structures of the two projections, we show that the same convergence properties can be obtained for the proposed method as Birgin’s method where the exact orthogonal projection onto the intersection of two convex sets is performed. Using the convergence properties, we prove that the proposed algorithm attains the optimal value or terminates in a finite number of iterations. The efficiency of the proposed method is illustrated with the numerical results on randomly generated synthetic/deterministic data and gene expression data, in comparison with other methods including the inexact primal–dual path-following interior-point method, the Newton-CG primal proximal-point algorithm, the adaptive spectral projected gradient method, and the adaptive Nesterov’s smooth method. For the gene expression data, our results are compared with the quadratic approximation for sparse inverse covariance estimation method. We show that our method outperforms the other methods in obtaining a better objective value fast.
AB - We extend the result on the spectral projected gradient method by Birgin et al. in 2000 to a log-determinant semidefinite problem with linear constraints and propose a spectral projected gradient method for the dual problem. Our method is based on alternate projections on the intersection of two convex sets, which first projects onto the box constraints and then onto a set defined by a linear matrix inequality. By exploiting structures of the two projections, we show that the same convergence properties can be obtained for the proposed method as Birgin’s method where the exact orthogonal projection onto the intersection of two convex sets is performed. Using the convergence properties, we prove that the proposed algorithm attains the optimal value or terminates in a finite number of iterations. The efficiency of the proposed method is illustrated with the numerical results on randomly generated synthetic/deterministic data and gene expression data, in comparison with other methods including the inexact primal–dual path-following interior-point method, the Newton-CG primal proximal-point algorithm, the adaptive spectral projected gradient method, and the adaptive Nesterov’s smooth method. For the gene expression data, our results are compared with the quadratic approximation for sparse inverse covariance estimation method. We show that our method outperforms the other methods in obtaining a better objective value fast.
KW - Computational efficiency
KW - Dual problem
KW - Dual spectral projected gradient methods
KW - Log-determinant semidefinite programs with linear constraints
KW - Theoretical convergence results
UR - http://www.scopus.com/inward/record.url?scp=85078298287&partnerID=8YFLogxK
U2 - 10.1007/s10589-020-00166-2
DO - 10.1007/s10589-020-00166-2
M3 - Article
AN - SCOPUS:85078298287
SN - 0926-6003
VL - 76
SP - 33
EP - 68
JO - Computational Optimization and Applications
JF - Computational Optimization and Applications
IS - 1
ER -