Abstract
This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.
Original language | English |
---|---|
Title of host publication | 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1770-1773 |
Number of pages | 4 |
ISBN (Electronic) | 9781457702204 |
DOIs | |
State | Published - 13 Oct 2016 |
Event | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States Duration: 16 Aug 2016 → 20 Aug 2016 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2016-October |
ISSN (Print) | 1557-170X |
Conference
Conference | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 16/08/16 → 20/08/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.