Abstract
8-Cl-cyclic adenosine monophosphate (8-Cl-cAMP) has been known to induce growth inhibition and differentiation in a variety of cancer cells by differential modulation of protein kinase A isozymes. To understand the anticancer activity of 8-Cl-cAMP further, we investigated the effect of 8-Cl-cAMP on apoptosis in human cancer cells. Most of the tested human cancer cells exhibited apoptosis upon treatment with 8-Cl-cAMP, albeit with different sensitivity. Among them, SH-SY5Y neuroblastoma cells and HL60 leukemic cells showed the most extensive apoptosis. The effect of 8-Cl-cAMP was not reproduced by other cAMP analogues or cAMP-elevating agents, showing that the effect of 8-Cl-cAMP was not caused by simple activation of protein kinase A (PKA). However, competition experiments showed that the binding of 8-Cl-cAMP to the cAMP receptor was essential for the induction of apoptosis. After the treatment of 8-Cl-cAMP, cells initially accumulated at the S and G2/M phases of the cell cycle and then apoptosis began to occur among the population of cells at the S/G2/M cell cycle phases, indicating that the 8-Cl-cAMP-induced apoptosis is closely related to cell cycle control. In support of this assumption, 8-Cl-cAMP-induced apoptosis was blocked by concomitant treatment with mimosine, which blocks the cell cycle at early S phase. Interestingly, 8-Cl-cAMP did not induce apoptosis in primary cultured normal cells and non-transformed cell lines, showing that 8-Cl-cAMP-induced apoptosis is specific to transformed cells. Taken together, our results show that the induction of apoptosis is one of the mechanisms through which 8-Cl-cAMP exerts anticancer activity.
Original language | English |
---|---|
Pages (from-to) | 33-41 |
Number of pages | 9 |
Journal | International Journal of Cancer |
Volume | 93 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jul 2001 |
Keywords
- 8-Cl-cAMP
- Apoptosis
- Cell cycle
- Human cancer cells
- Protein kinase A