TY - JOUR
T1 - 8-Cl-cAMP and its metabolite, 8-Cl-adenosine induce growth inhibition in mouse fibroblast DT cells through the same pathways
T2 - Protein kinase C activation and cyclin B down-regulation
AU - Ahn, Young Ho
AU - Jung, Joong Mok
AU - Hong, Seung Hwan
PY - 2004/11
Y1 - 2004/11
N2 - 8-Chloro-cyclic AMP (8-Cl-cAMP) is known to be most effective in inducing growth inhibition and differentiation of a number of cancer cells. Also, its cellular metabolite, 8-Cl-adenosine was shown to induce growth inhibition in a variety of cell lines. However, the signaling mechanism that governs the effects of 8-Cl-cAMP and/or 8-Cl-adenosine is still uncertain and it is not even sure which of the two is the key molecule that induces growth inhibition. In this study using mouse fibroblast DT cells, it was found that adenosine kinase inhibitor and adenosine deaminase could reverse cellular growth inhibition induced by 8-Cl-cAMP and 8-Cl-adenosine. And 8-Cl-cAMP could not induce growth inhibition in the presence of phosphodiesterase (PDE) inhibitor, but 8-Cl-adenosine could. We also found that protein kinase C (PKC) inhibitor could restore this growth inhibition, and both the 8-Cl-cAMP and 8-Cl-adenosine could activate the enzymatic activity of PKC. Besides, after 8-Cl-cAMP and 8-Cl-adenosine treatment, cyclin B was down-regulated and a CDK inhibitor, p27 was up-regulated in a time-dependent manner. These results suggest that it is not 8-Cl-cAMP but 8-Cl-adenosine which induces growth inhibition, and 8-Cl-cAMP must be metabolized to exert this effect. Furthermore, there might exist signaling cascade such as PKC activation and cyclin B down-regulation after 8-Cl-cAMP and 8-Cl-adenosine treatment.
AB - 8-Chloro-cyclic AMP (8-Cl-cAMP) is known to be most effective in inducing growth inhibition and differentiation of a number of cancer cells. Also, its cellular metabolite, 8-Cl-adenosine was shown to induce growth inhibition in a variety of cell lines. However, the signaling mechanism that governs the effects of 8-Cl-cAMP and/or 8-Cl-adenosine is still uncertain and it is not even sure which of the two is the key molecule that induces growth inhibition. In this study using mouse fibroblast DT cells, it was found that adenosine kinase inhibitor and adenosine deaminase could reverse cellular growth inhibition induced by 8-Cl-cAMP and 8-Cl-adenosine. And 8-Cl-cAMP could not induce growth inhibition in the presence of phosphodiesterase (PDE) inhibitor, but 8-Cl-adenosine could. We also found that protein kinase C (PKC) inhibitor could restore this growth inhibition, and both the 8-Cl-cAMP and 8-Cl-adenosine could activate the enzymatic activity of PKC. Besides, after 8-Cl-cAMP and 8-Cl-adenosine treatment, cyclin B was down-regulated and a CDK inhibitor, p27 was up-regulated in a time-dependent manner. These results suggest that it is not 8-Cl-cAMP but 8-Cl-adenosine which induces growth inhibition, and 8-Cl-cAMP must be metabolized to exert this effect. Furthermore, there might exist signaling cascade such as PKC activation and cyclin B down-regulation after 8-Cl-cAMP and 8-Cl-adenosine treatment.
UR - http://www.scopus.com/inward/record.url?scp=4644330049&partnerID=8YFLogxK
U2 - 10.1002/jcp.20047
DO - 10.1002/jcp.20047
M3 - Article
C2 - 15334662
AN - SCOPUS:4644330049
SN - 0021-9541
VL - 201
SP - 277
EP - 285
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 2
ER -