Abstract
Fabry disease is a genetic lysosomal storage disease caused by deficiency of α-galactosidase, the enzyme-degrading neutral glycosphingolipid that is transported to lysosome. Glycosphingolipid accumulation by this disease causes multi-organ dysfunction and premature death of the patient. Currently, enzyme replacement therapy (ERT) using recombinant α-galactosidase is the only treatment available for Fabry disease. To maximize the efficacy of treatment, enhancement of cellular delivery and enzyme stability is a challenge in ERT using α-galactosidase. In this study, protein nanoparticles using human serum albumin (HSA) and 30Kc19 protein, originating from silkworm, were used to enhance the delivery and intracellular α-galactosidase stability. 30Kc19-HSA nanoparticles loaded with the α-galactosidase were formed by desolvation method. 30Kc19-HSA nanoparticles had a uniform spherical shape and were well dispersed in cell culture media. 30Kc19-HSA nanoparticles had negligible toxicity to human cells. The nanoparticles exhibited enhanced cellular uptake and intracellular stability of delivered α-galactosidase in human foreskin fibroblast. Additionally, they showed enhanced globotriaosylceramide degradation in Fabry patients’ fibroblasts. It is expected that 30Kc19-HSA protein nanoparticles could be used as an effective tool for efficient delivery and enhanced stability of drugs.
Original language | English |
---|---|
Pages (from-to) | 10395-10402 |
Number of pages | 8 |
Journal | Applied Microbiology and Biotechnology |
Volume | 100 |
Issue number | 24 |
DOIs | |
State | Published - 1 Dec 2016 |
Bibliographical note
Publisher Copyright:© 2016, Springer-Verlag Berlin Heidelberg.
Keywords
- Drug delivery
- Enzyme replacement therapy
- Enzyme stability
- Fabry disease
- Protein nanoparticle