α,ω-Diphenylalanine-End-Capping of PEG-PPG-PEG Polymers Changes the Micelle Morphology and Enhances Stability of the Thermogel

Hae An Kim, Hyun Jung Lee, Ja Hye Hong, Hyo Jung Moon, Du Young Ko, Byeongmoon Jeong

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Pluronics F127 (P, PEG-PPG-PEG triblock copolymer) was coupled with diphenylalanine (FF) to prepare FF-end-capped Pluronics (FFPFF). With increasing temperature from 10 to 60 °C, the FFPFF self-assembled to vesicles in water. The unimer-to-vesicle transition accompanies endothermic enthalpy of 53.9 kcal/mol. Aqueous P and FFPFF solutions exhibited thermogelation in 15.0-24.0 wt %. The gel phase of FFPFF was stable up to 90 °C, whereas that of P turned into a sol again at 55-86 °C, indicating that end-capping with FF improved the gel stability against heat. In addition, the carboxylic acids of the FF end-groups can form coordination bonds with metal ions, and the gel modulus at 37 °C increased from 15-21 KPa (P) to 20-25 KPa (FFPFF) to 24-28 KPa (FFPFF-Zn), and the duration of gel against water-erosion increased from 24 h (P) to 60 h (FFPFF-Zn), leading to a useful biomaterial for sustained drug delivery. The FFPFF-Zn gels implanted in the rats' subcutaneous layer induced a mild inflammatory responses. Contrary to the previous end-capping of Pluronics by poly(lactic acid), polycarprolactone, carboxylic acid, and so on that weakened the gel stability, the diphenylalanine end-capping strengthened the stability of Pluronics gel against heat and water-erosion. This paper suggests that the control of polymer nanoassemblies directed by FF end-groups improves the mechanical properties and stability of the resulting thermogel and, thus, provides a useful drug delivery carrier with prolonged durability.

Original languageEnglish
Pages (from-to)2214-2219
Number of pages6
JournalBiomacromolecules
Volume18
Issue number7
DOIs
StatePublished - 10 Jul 2017

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2012M3A9C6049835 2017R1A2B2007356, and 2014M3A9B6034223).

Publisher Copyright:
© 2017 American Chemical Society.

Fingerprint

Dive into the research topics of 'α,ω-Diphenylalanine-End-Capping of PEG-PPG-PEG Polymers Changes the Micelle Morphology and Enhances Stability of the Thermogel'. Together they form a unique fingerprint.

Cite this